

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/42

Paper 4 Written Paper May/June 2017

MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question				Answer		Marks
1(a)	Label	Op code	Operand	Comment		9
	START:	IN		// INPUT character]	
		STO	CHAR1	// store in CHAR1	1	
		IN		// INPUT character	٦	
		STO	CHAR2	// store in CHAR2	1	
		LDD	CHAR1	// initialise ACC to ASCII value of CHAR1	1	
	LOOP:	OUT		//output contents of ACC	1+1	
		CMP	CHAR2	// compare ACC with CHAR2	1	
		JPE	ENDFOR	// if equal jump to end of FOR loop	1	
		INC	ACC	// increment ACC	1	
		JMP	LOOP	// jump to LOOP	1	
	ENDFOR:	END				
	CHAR1:		•			
	CHAR2:					
1(b)	Label	Op code	Operand	Comment		6
	START:	LDD	NUMBER1		1	
		XOR	MASK	// convert to one's complement	1	
		INC	ACC	// convert to two's complement	1	
		STO	NUMBER2		1	
		END				
	MASK:	B1111	1111	// show value of mask in binary here	1	
	NUMBER1:	в0000	0101	// positive integer		
	NUMBER2:	B1111	.1011	// show value of negative equivalent	1	

© UCLES 2017 Page 2 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

				•		
Question			Answer			Mai
2(a)	A pointer that doesn't point to anoth	er node/	other data/addres	ss // indicates the	e end of the branch	
2(b)	one mark per bulletnode with 'Athens' linked to left poinnull pointers in left and right pointers			ointer)		
2(c)(i)						
	RootPointer		LeftPointer	Tree Data	RightPointer	
	0	[0]	2	Dublin	1	
		[1]	-1/∅	London	3	
		[2]	6	Berlin	5	
		[3]	4	Paris	-1/Ø	
		[4]	-1/∅	Madrid	-1 /∅	
	FreePointer	[5]	-1/Ø	Copenhagen	-1/Ø	
	7	[6]	-1/Ø	Athens	-1/Ø	
	1 mark	[7]	8		-1 /∅	
		[8]	9		-1 /∅	
		[9]	-1/Ø		-1/Ø	

© UCLES 2017 Page 3 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
2(d)(i)	TYPE Node	7
	LeftPointer : INTEGER	
	RightPointer: INTEGER	
	Data : STRING	
	ENDTYPE	
	DECLARE Tree : ARRAY[0 : 9] OF Node	
	DECLARE FreePointer : INTEGER	
	DECLARE RootPointer : INTEGER	
	PROCEDURE CreateTree()	
	DECLARE Index : INTEGER	
	RootPointer \leftarrow -1	
	FreePointer \leftarrow 0	
	FOR Index ← 0 TO 9 // link nodes	
	Tree[Index].LeftPointer ← Index + 1	
	Tree[Index].RightPointer \leftarrow -1	
	ENDFOR	
	Tree[9].LeftPointer ← -1	
	ENDPROCEDURE	

© UCLES 2017 Page 4 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer		Marks
2(d)(ii)	PROCEDURE AddToTree(ByVal NewDataItem : STRING)		8
	// if no free node report an error		
	IF FreePointer = -1	1	
	THEN		
	ERROR("No free space left")		
	ELSE // add new data item to first node in the free list		
	NewNodePointer ← FreePointer		
	Tree[NewNodePointer].Data NewDataItem	1	
	// adjust free pointer		
	FreePointer Tree[FreePointer].LeftPointer	1	
	// clear left pointer		
	Tree[NewNodePointer].LeftPointer \leftarrow -1	1	
	// is tree currently empty ?		
	<pre>IF RootPointer = -1</pre>	1	
	THEN // make new node the root node		
	${\tt RootPointer} \leftarrow {\tt NewNodePointer}$	1	
	ELSE // find position where new node is to be added		
	Index ← RootPointer		
	CALL FindInsertionPoint(NewDataItem, Index, Direction)		

© UCLES 2017 Page 5 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
	IF Direction = "Left"	
	THEN // add new node on left	
	Tree[Index].LeftPointer NewNodePointer 1	
	ELSE // add new node on right	
	Tree[Index].RightPointer NewNodePointer 1	
	ENDIF	
	ENDIF	
	ENDIF	
	ENDPROCEDURE	
2(e)	 1 mark per bullet test for base case (null/-1) recursive call for left pointer output data recursive call for right pointer order, visit left, output, visit right 	5
	IF Pointer <> NULL 1	
	THEN	
	TraverseTree(Tree[Pointer].LeftPointer) 1	
	OUTPUT Tree[Pointer].Data	
	TraverseTree(Tree[Pointer].RightPointer) 1	
	ENDIF	
	ENDPROCEDURE	

© UCLES 2017 Page 6 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
3(a)	 1 mark per bullet Instantiation of island object and calling DisplayGrid Loop 3 times and Island.HideTreasure Call procedures StartDig and DisplayGrid 	3
	Example Python	
	Island = IslandClass()	
	DisplayGrid()	
	for Treasure in range(3):	
	Island.HideTreasure()	
	StartDig()	
	DisplayGrid()	
	Example Pascal	
	var Island: IslandClass;	
	var Treasure : integer;	
	begin	
	<pre>Island := IslandClass.Create();</pre>	
	DisplayGrid;	
	for Treasure := 1 to 3 do	
	Island.HideTreasure();	
	StartDig;	
	DisplayGrid;	
	end;	

© UCLES 2017 Page 7 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
	Example VB.NET	
	Dim Island As New IslandClass()	
	DisplayGrid()	
	For Treasure = 1 To 3	
	Island.HideTreasure()	
	Next	
	StartDig()	
	DisplayGrid()	

© UCLES 2017 Page 8 of 19

Cambridge International AS/A Level – Mark Scheme

	PUBLISHED		
Question	Answer		Marks
3(b)	 1 mark per bullet to max 5 Class heading and ending (in appropriate place) Constructor heading and ending (in appropriate place) Declaring grid with correct dimensions (as private) Declaring Sand as a constant Nested loops covering dimensions (0 – 29 and 0 – 9) Assigning Sand // '.' to each array element 		5
	<pre>Example Python class IslandClass: definit(self): Sand = '.' selfGrid = [[Sand for j in range(30)]</pre>	1 1 1 + 1	
	Example Pascal		
	type		
	IslandClass = class	1	
	private		
	Grid : array[09, 029] of char;	1	
	<pre>public constructor Create(); procedure HideTreasure(); procedure DigHole(x, y : integer); function GetSquare(x, y : integer) : char;</pre>		
	end;		
	<pre>constructor IslandClass.Create(); const Sand = '.'; var i, j : integer; begin</pre>	1	
	for i := 0 to 9 do for j := 0 to 29 do Grid[i, j] := Sand; end;	1	

© UCLES 2017 Page 9 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
	Example VB.NET	
	Class IslandClass	
	Private Grid (9, 29) As Char	
	Public Sub New()	
	Const Sand = "."	
	For $i = 0$ To 9	
	For j = 0 To 29	
	Grid(i, j) = Sand	
	Next	
	Next	
	End Sub	
	End Class	
3(c)(i)	1 mark per bullet	2
	 Method (getter or property) heading, takes two parameters returns char, and ending Method returns Grid value 	
	Example Python	
	def GetSquare(self, Row, Column):	
	return selfGrid[Row][Column]	
	Example Pascal	
	function IslandClass.GetSquare(Row, Column : integer) As Char;	
	begin	
	Result := Grid[Row, Column];	
	end;	
	Example VB.NET	
	Public Function GetSquare(Row As Integer, Column As Integer) As Char	
	Return Grid(Row, Column)	
	end Function	

© UCLES 2017 Page 10 of 19

Cambridge International AS/A Level – Mark Scheme

608/42	Cambridge International AS/A Level – Mark Scheme PUBLISHED	May	/June 201
Question	Answer		Marks
3(c)(ii)	 1 mark per bullet DisplayGrid header and ending, with two loops with correct limits Calling Island.GetSquare with correct parameters inside iteration Output an entire row in one line Output a new line at the end of a row 		4
	<pre>Example Python def DisplayGrid() : for i in range (10) : for j in range (30) : print(island.GetSquare(i, j), end='') print()</pre>	1 1 + 1 1	
	<pre>Example Pascal procedure DisplayGrid(): var i, j : integer; begin for i := 0 to 9 do</pre>		
	<pre>begin for j := 0 to 29 do write(island.GetSquare(i, j))); writeLn; end; end;</pre>	1 1+1 1	
	Example VB.NET Sub DisplayGrid() For i = 0 to 9 For j = 0 to 29	1	
	Console.Write(island.GetSquare(i, j)) Next Console.WriteLine() Next	1 + 1	

Page 11 of 19 © UCLES 2017

End Sub

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer		Marks
3(d)	 1 mark per bullet to max 5 Method header and Declaring Treasure as a constant Generating a random number for column Generating a random number for row Check whether treasure already at generated location Repeatedly generate new coordinates in a loop Assign Treasure to location 		Max 5
	Example Python		
	def HideTreasure(self):	1	
	Treasure = 'T'		
	x = randint(0,9)	1	
	y = randint(0,29)	1	
	<pre>while selfGrid[y][x] == Treasure:</pre>	1+1	
	x = randint(0,9) y = randint(0,29)		
	selfGrid[y][x] = Treasure	1	
	Example Pascal		
	procedure IslandClass.HideTreasure();		
	const Treasure = 'T';	1	
	<pre>var x, y : integer;</pre>		
	begin		
	repeat		
	x := Random(10);	1	
	y := random(30);	1	
	<pre>until Grid[x, y] <> Treasure;</pre>	1+1	
	<pre>Grid[x, y] := Treasure;</pre>	1	
	end;		

© UCLES 2017 Page 12 of 19

Cambridge International AS/A Level – Mark Scheme

	LORLIQUED		
Question	Answer		Marks
	Example VB.NET		
	Public Sub HideTreasure()		
	Const Treasure = "T"	1	
	Dim RandomNumber As New Random		
	Dim x, y As Integer		
	Do		
	x = RandomNumber.Next(0, 10)	1	
	y = RandomNumber.Next(0, 30)	1	
	Loop Until Grid(x, y) <> Treasure	1+1	
	Grid(x, y) = Treasure	1	
	End Sub		

© UCLES 2017 Page 13 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

POBLISHED			
Question	Answer		Marks
3(e)(i)	 1 mark per bullet Method heading, with two parameters & Declaring constants for Treasure, Hole and FoundTreasure Check if treasure at parameter locations Set to FoundTreasure (X) and Set to Hole (O) 		
	<pre>Example Python def DigHole(self, x, y) : Treasure = 'T' Hole = 'O' Foundtreasure = 'X' if selfGrid[x][y] == Treasure: selfGrid[x][y] = Foundtreasure else : selfGrid[x][y] = Hole return</pre>	1 1 1	
	<pre>Example Pascal procedure IslandClass.DigHole(x, y : integer); const Treasure = 'T'; const Hole = '0'; const Foundtreasure = 'X'; begin if Grid[x, y] = Treasure then</pre>	1	
	<pre>Grid[x, y] := Hole; end;</pre>	1	

© UCLES 2017 Page 14 of 19

Cambridge International AS/A Level – Mark Scheme

PUBLISHED			
Question	Answer	Marks	
	Example VB.NET		
	Public Sub DigHole(x As Integer, y As Integer)		
	Const Treasure = "T"		
	Const Hole = "O"		
	Const Foundtreasure = "X"		
	If $Grid(x, y) = Treasure Then$		
	Grid(x, y) = Foundtreasure		
	Else		
	Grid(x, y) = Hole		
	End If		
	End Sub		

© UCLES 2017 Page 15 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
3(e)(ii)	1 mark per bullet to max 5	Max 5
	 Prompt to user for position down and across, read positions input as an IntegerValidation for position row – between 0 and 9 Validation for position column- between 0 and 29 Exception handling/pass for validation Ask for repeated input until valid (for both row and column) Call Island.DigHole method with the coordinates 	
	Example Python	
	<pre>def StartDig() : Valid = False</pre>	
	while not Valid: # validate down position 1	
	try:	
	x = int(input("position down < 0 to 9 > ? "))	
	if $x >= 0$ and $x <= 9$:	
	Valid = True	
	except:	
	Valid = False	
	Valid = False	
	while not Valid : # validate across position	
	<pre>try : y = int(input("position across <0 to 29> ? ")) 1</pre>	
	if y >= 0 and y <= 29:	
	Valid = True	
	except:	
	Valid = False	
	island.DigHole(x, y)	
	return	

© UCLES 2017 Page 16 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
	Example Pascal	
	<pre>procedure StartDig;</pre>	
	var xString, yString: String;	
	x, y : integer;	
	begin	
	Valid := False;	
	repeat	
	Write('position down <0 to 9>? '); ReadLn(xString);	
	try	
	x := StrToInt(xString);	
	if $(x >= 0)$ AND $(x <= 9)$	
	then	
	Valid := True;	
	except	
	Valid := False;	
	until Valid;	
	Valid := False;	
	repeat	
	Write(position across <0 to 29> ? '); ReadLn(yString);	
	try	
	y := StrToInt(yString);	
	if $(y \ge 0)$ AND $(y \le 29)$	
	then	
	Valid := True;	
	except	
	Valid := False;	
	until Valid;	
	<pre>island.DigHole(x,y);</pre>	
	end;	

© UCLES 2017 Page 17 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
	Example VB.NET	
	Sub StartDig()	
	Dim x, y As Integer	
	Dim Valid = False	
	Do	
	Console.Write("Position down <0 to 9>? ")	
	Try	
	<pre>x = CInt(Console.ReadLine())</pre>	
	If $(x \ge 0)$ AND $(x \le 9)$ Then	
	Valid = True	
	End If	
	Catch	
	Valid = False 'accept different types of exceptions	
	End Try	
	Loop Until Valid	
	Valid = False	
	Do	
	Console.Write("Position across <0 to 29> ? ") _	
	Try	
	<pre>y = int(Console.ReadLine())</pre>	
	If $(y \ge 0)$ AND $(y \le 29)$ Then	
	Valid = True	
	End IF	
	Catch	
	Valid = False	
	End Try	
	Loop until Valid	
	island.DigHole(x, y)	
	End Sub	
3(f)(i)	containment/aggregation	1

© UCLES 2017 Page 18 of 19

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

 1 OBLIGHED			
Question	n Answer	Marks	
3(f)(ii)	 IslandClass box and Square Box, with correct connection One at IslandClass and one * at Square IslandClass 1 1* Square	Max 2	

© UCLES 2017 Page 19 of 19